UML for the Impatient

Martin Gogolla
University of Bremen, FB 3, Computer Science Department,
Postfach 330440, D-28334 Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract

By examples we give a short introduction into the nine diagram forms pro-
vided by the Unified Modeling Language (UML). The running example we use
is a small traffic light system which we first formally describe in an object
specification language. Afterwards, central aspects of the specification and the
specified system are visualized with UML constructs. As a conclusion, we dis-
cuss a classification of the various UML diagram forms.

1 Introduction

Developing software is supported by a large variety of object-oriented analysis and
design approaches [CY90, WWW90, MO92, SM92, SGW94|. Recently, the Unified
Modeling Language (UML) [BJR97c, BJR97b, BJR97a] was developed as the result
of an effort in developing a single standardized language for object-oriented model-
ing. This language enhances and integrates concepts from three popular analysis and
design methods, namely Booch [Boo91], OMT [RBP*91], and OOSE [JCJ092]. The
aim of this paper is to give a quick overview on the UML features by explaining the
different diagram forms using a running example. The view in this paper on the
UML is a specification and conceptual modeling point of view in contrast to a more
implementation and programming language influenced one.

The example is a small traffic light system which we formally describe in an object
specification language. Central aspects of the specification and the specified system
are visualized with UML constructs. The formal specification language we employ is
TROLL light [GCH93, HCG94, GH95, RG97], but this paper is not on the technical
content of this language. The TROLL light features we use are easy to understand.
Other languages related to TROLL light are OBLOG [SSE87], Mondel [BBE190],
TROLL [JSHS91], CMSL [Wie91], and Albert [DDP93] (among many others).

The structure of the rest of this paper is as follows. In Sect. 2 we explain in detail
the traffic light system we want to use. The central Sect. 3 shows examples of the
nine UML diagram forms: class, object, use case, sequence, collaboration, statechart,

1

activity, component, and deployment diagrams. The paper ends with concluding and
summarizing remarks discussing a classification of the various UML diagram forms.

2 The Traffic Light System

The example system to be described is a simple street crossing as pictured in Fig. 1
where two streets (one in North-South direction, the other in West-East direction)
meet and therefore the traffic has to be coordinated. The traffic lights are called North,
South, West, and East. We assume the North and South traffic light always show
identical signals as we do for the West and East ones. The central safety requirement
is that two adjacent traffic lights, for example the West and the North light, never
display identical signals. For example, it is forbidden that West displays Green and
North displays Green as well.

UYHON
v cool8
<
>
§oo0) A

South

Figure 1: Traffic Lights on the Crossing

We further suppose that the traffic lights operate in an Italian style, i.e., the change
of signals is done in the order Red-Green-GreenYellow with three phases. This is dif-
ferent from the order, for example, in Germany which is Red-RedYellow-Green-Yellow
with four phases.

The TROLL light specification of the traffic light system comprises four parts:
specifications for the data types Int and Bool and specifications for the object types
TrafficLight and Control. Data types are assumed to be specified with a data
type specification language. However, frequently used data types like the integer
and boolean values are predefined and have not to be given explicitly. It remains
to comment on the two remaining types, the central object types TrafficLight and
Control: the specification of the object type TrafficLight as shown in Fig. 2 is

TEMPLATE TrafficLight -- LO1

DATA TYPES Int, Bool; -- L02
ATTRIBUTES -- LO3
Phase : int; -- L0O4
DERIVED Red, Yellow, Green : bool; —-- LO5
EVENTS —-- LO06
BIRTH createLight(initPhase:int); -- LO7
switchLight; -- LO8
CONSTRAINTS -- L09
1<=Phase AND Phase<=3; -- L10
VALUATION -- L11
[createLight (initPhase)] Phase=initPhase; -- L12
[switchLight] Phase=(Phase MOD 3)+1; -- L13
DERIVATION -- L14
Red = (Phase=1); -- L15
Yellow = (Phase=3); -- L16
Green = (Phase=2 0OR Phase=3); -- L17
BEHAVIOR -- L18
PROCESS TrafficLight = (createLight -> LightLife); - L19
PROCESS LightLife = (switchLight -> LightLife); -- L20
END TEMPLATE - L21

Figure 2: Traffic Light Specification in TROLL light

designed to generate the four traffic light instances; these will be managed by exactly
one object of the object type Control as depicted in Fig. 3; the controlling object
will contain the traffic lights as its parts. The distinction between data and object
types is motivated by the observation that instances of data types represent stateless
values whereas instances of object types (objects) can change their state.

We now shortly explain the different syntactical clauses of a TROLL light specifica-
tion following the templates (as object types or classes are called in the language) given
in Figs. 2 and 3. For a deeper discussion we refer to [GCH93, HCG94, GH95, RG97].

TEMPLATE section: This section gives a name to the template (object type, class)
being defined. Template names start with capital letters.

DATA TYPES section: Here, the imported data types are mentioned and their sig-
nature is made known. Thus, for example, importing Int means that the sort
int together with operations like 1: -> int and +: int int -> int are made
known to TrafficLight. Sorts start with lower case letter. The difference be-
tween the data type Int and the data sort int is that Int comprises the sort
int and all operations like 1 and + which work on the sort int.

ATTRIBUTES section: Attributes define observable properties of objects by specifying
an attribute name and an attribute sort. Attributes can be data- or object-
valued. They can be classified as DERIVED. Derived attributes are not stored

TEMPLATE Control
DATA TYPES Int;
TEMPLATES TrafficLight;
SUBOBJECTS
West, East, North, South : trafficLight;
ATTRIBUTES
Phase : int;
EVENTS
BIRTH createControl;
createlLights;
switchControl;
VALUATION
[createControl] Phase=4;
[switchControl] Phase=(Phase MOD 4)+1;
CONSTRAINTS
1<=Phase AND Phase<=4;
West .Phase=East.Phase;
North.Phase=South.Phase;
West .Phase<>North.Phase;
NOT (West.Green AND North.Green);
NOT (West.Red AND North.Red);
INTERACTION
createlLights >>
West.createLight(3), East.createLight(3),
North.createLight (1), South.createLight(1);
{Phase=4 OR Phase=2} switchControl >>
West.switchLight, North.switchLight;
{Phase=1} switchControl >> North.switchLight;
{Phase=3} switchControl >> West.switchLight;
West.switchLight >> East.switchLight;
North.switchLight >> South.switchLight;
BEHAVIOR
PROCESS Control = (createControl -> CreatelLights);
PROCESS CreateLights = (createlLights -> ControlLife

)

PROCESS ControlLife = (switchControl -> ControlLife);

END TEMPLATE

Figure 3: Control Specification in TROLL light

explicitly, but their values are calculated from other information by means of a

derivation rule.

EVENTS section: Events are state changing entities. They are described by their
name and parameters. A special event in an object’s life is the BIRTH event

bringing the object into life.

CONSTRAINTS section: Constraints are employed to restrict the possible object states

4

Cco1
Cco02
Cco3
Co4
C05
C06
co7
Cco8
Cco9
C10
C11
C12
C13
Ci4
C15
C16
Cc17
C18
C19
C20
Cc21
Cc22
Cc23
C24
C25
C26
c27
Cc28
C29
C30
C31
C32
C33
C34
C35
C36

to the ones satisfying the given formulas. They can be considered as invari-
ants. The set of constraints given has to necessarily to be minimal in the sense
that one constraint cannot be deduced from another one. For example, Con-
straints C20 and C21 are consequences from line C19 and the derivation rules for
the attributes Green and Red.

VALUATION section: The valuation rules specify the effect the events have on at-
tributes. They can be considered as assignments.

DERIVATION section: The derivation rules state how the value of a derived attribute
is calculated from other information already present.

BEHAVIOR section: The BEHAVIOR section specifies the allowed life cycles (event se-
quences) of the objects in question by means of process definitions. An object’s
life starts with a process having the same name as the current template.

TEMPLATES section: Here the signature (consisting of object sorts again, starting
with lower case letters, attributes, and events) of other templates, which are
used in the current template, are made known.

SUBOBJECTS section: The SUBOBJECTS section defines the exclusive components of
an object. Subobjects cannot be shared, but they can be referenced by object-
valued attributes.

INTERACTION section: INTERACTION specifies the object’s communication patterns
by means of event calling rules. An interaction rule like West.switchLight >>
East.switchLight states that whenever the event switchLight in the ob-
ject West occurs, then simultaneously (in the same transition) the event
switchLight in the object East also occurs. When any of the two is not al-
lowed to occur (for example due to integrity constraint violation), the complete
transition cannot take place. Comma separated lists of events on the right
hand side of an interaction rules like E >> E1, E2 are short for E >> E1 and
E >> E2. Preconditions express that the interaction only takes place when the
precondition is satisfied.

3 UML Diagrams for the Specification
UML defines in the UML Notation Guide nine different diagram types:

e Static structure diagrams divided into (1) Class and (2) Object diagrams,
e (3) Use case diagrams,

4) Sequence diagrams,

(3)
(4)
(5)
(6)

5) Collaboration diagrams,

6) Statechart diagrams,

e (7) Activity diagrams, and

e Implementation diagrams divided into (8) Component and (9) Deployment di-
agrams.

We now shortly introduce these different diagram types by pointing out special
aspects of the above object specification and the described system. With the exception
of discussing first use case diagrams, we follow the order from above which is taken
from the UML Notation Guide.

3.1 Use Case Diagrams

Crossing

generate control

Engineer generate traffic lights

switch traffic control —

Operator

Figure 4: Use Case Diagram for Traffic Light System

A use case diagram serves to display the relationships between the actors and the use
cases in a system. Use case diagrams are designed to give a rough, informal overview
of the possible classes of users and the services and functionalities the system provides
to them.

Actors can be visualized as “stick man” icons with the name of the actor below
the icon. In Fig. 4 two different actors are shown: an engineer actor and an operator
actor. Use cases are pictured as ellipses containing the name of the use case. In Fig. 4
we have three use cases: two connected with the engineer actor and one connected
with the operator actor. The use cases “generate control” and “generate traffic lights”
for the engineer express that the system initialization and installation of the traffic
lights is done by an engineering expert. The operation of the system is symbolized by
the use case “switch traffic control” done by the system operator (in our example, this
system operator is an idealized and not a real actor; it could be another software unit
working in the larger context of synchronizing different traffic lights). The system
boundary is pictured as a rectangle enclosing the use cases and separating the actors
from them. The rectangle also gives a name to the use case.

3.2 Class Diagrams

TrafficLight

Phase:int

/Red, /Yellow, /Green:bool
createLight(initPhase:int)

switchLight

1 1 1 1

West East North South

1 1 1 1

Control

Phase:int

createControl
createlLights
switchControl

Figure 5: Class Diagram for Object Types

As the name indicates, static structure diagrams serve to represent static aspects of
the system, i.e. these diagram serve to describe the structure of single system states.
These diagrams are divided into class and object diagrams. The first type allows to
describe states in a general form characterizing a set of allowed states, whereas the
second type shows one concrete state.

Figures 5 and 6 show class diagrams. In Figs. 5 and 6 we have shown the structure,
i.e. the signatures, of the data types and object types for the traffic system. Because
TROLL light strictly distinguishes between data values and objects, we give two
separate class diagrams. Alternatively, we could have given a single diagram for both
kinds of types.

In Fig. 5 the object types (templates) TrafficLight and Control together with
their attributes and operations are given. The three compartments in a class box
specify the class name, the attributes of the class, and the operations of the class.
The attributes are given by the attribute name and the attribute type, and the oper-
ations by their name and the type of their arguments. The slash / before an attribute
name denotes a derived attribute. Relationships between classes are shown as connec-
tions between them. The four relationship West, East, North, and South denote the
components of a Control object. The filled diamond indicates an unsharable com-
ponent, the arrow expresses that the relationship is navigable only in the direction
from Control objects to TrafficLight objects, and the numbers indicate cardinal-
ities. Thus the diagram in Fig. 5 reflects the following sections of the TROLL light
templates TrafficLight and Control.

Bool

false():bool, true():bool, ...
not(b:bool):bool, ...
and(bl:bool,b2:bool):bool, ...

Int

0():int, ...

succ(i:int):int, pred(i:int):int
=(izint,j:int):bool, <>(i:int,j:int):booal, ...
-(izint):int, abs(i:int):int, ...
+(izint,j:int):int, mod(i:int,j:int):int, ...

Figure 6: Class Diagram for Data Types

ATTRIBUTES -- L03
Phase : int; -- L04
DERIVED Red, Yellow, Green : bool; —-- LO5

EVENTS -— L06
BIRTH createLight(initPhase:int); -- LO7
switchLight; -- LO8

SUBOBJECTS -- C04
West, East, North, South : trafficLight; -— CO05

ATTRIBUTES -- C06
Phase : int; -- CO07

EVENTS -- C08
BIRTH createControl; -- C09
createlLights; -- C10
switchControl; -- C11

Alternatively to the filled diamond notation, unsharable aggregations (composi-
tions) can also be depicted by graphical nesting of class rectangles. In Fig. 7 this is
done for the four traffic lights as components of the control object. Cardinalities for
the components are given in the upper right corner of the component class rectangle.

In Fig. 6 the data types Bool and Int together with their operations are given. As
indicated by the empty attribute compartment, both types do not possess attributes
but only operations. As indicated by the dashed arrow the class Int depends on the
class Bool: it uses some operations of Bool to implement some of its own operations.

Control

West: TrafficLight 1

East:TrafficLight L

North:TrafficLight 1

South:TrafficLight 1

Figure 7: Class Diagram with Graphical Nesting

3.3 Object Diagrams

North: TrafficLight

/Red:true
/Yellow:false
/Green:false

West: TrafficLight East:TrafficLight
/Red:false :Control /Red:false
/Yellow:false /Yellow:false
/Green:true /Green:true

South:TrafficLight

/Red:true
/Yellow:false
/Green:false

Figure 8: Object Diagram

Let us now consider the second form of static structure diagrams. The diagram in
Fig. 8 shows a system state as an object diagram. The state displayed allows cars in
West-East direction to pass their traffic light while the ones in North-South direction
have to wait. Object instances are labeled by an optional name and the type of the
object. In order to better distinguish between types and instances, instance labels are
underlined. The diagram can be considered as the formal counterpart of Fig. 1. We
have decided to show only some of the important attributes, namely the colors of the

traffic lights. Alternatively, we could have given all attributes and their corresponding
values.

Static structure diagrams show in the first place signatures and some constraints
restricting the possible systems states and denoted in a graphical way, for example, the
cardinality restrictions. With respect to TROLL light, the Attributes, Subobjects,
and Events sections of a template are given.

3.4 Sequence Diagrams

X

:Control

createControl
createLights

createlLight(3)

East West South
createLight(3)| | createLight(1)

switchControl

switchLight switchLight switchLight switchLight
switchControl

switchLight switchLight

switchControl

switchLight switchLight switchLight switchLight
switchControl

switchLight switchLight
switchControl
U L switchLight LU switchLight LU switchLight U switchLight U

Figure 9: Sequence Diagram

10

A sequence diagram pictures interaction among objects. It shows the participating
objects together with a lifeline symbolizing life cycles or parts of them. The messages
the objects exchange are ordered on the lifeline with respect to their occurrence in
time.

In Fig. 9 a snapshot of a typical life cycle of the described traffic light system is
shown. The objects involved are a user object, one instance of the Control object, and
the four traffic lights. Object lifelines are pictured as long, narrow rectangles below
wider object rectangles including the object names. Events (or messages) together
with their arguments are notated close to arrows going from the sender to the receiver.
Birth events creating objects touch the wider object rectangles thus symbolizing that
objects enter the scene. Usually, the triggering and the triggered event are shown on
the same level on the lifeline. But because of the complex interaction mechanism in
the example this would be confusing. Therefore we have taken the freedom to show
concurrent events a bit below their triggering events (it is unclear how to visualize in
sequence diagrams that one event simultaneously triggers e.g. three other events). For
example, the second from above switchControl event triggers the switchLight event
in the North and South traffic lights. These arrows are the graphical counterpart of
lines C28 and C31 in the TROLL light specification. These three events are supposed
to occur simultaneously. This sequence diagram symbolizes the Interaction axioms
of the TROLL light specification. The triggered events are especially determined by
the preconditions of these axioms.

INTERACTION -- C22
createlLights >> -- C23
West.createLight(3), East.createLight(3), -- C24
North.createLight (1), South.createLight(1); -- C25
{Phase=4 OR Phase=2} switchControl >> -- C26
West.switchLight, North.switchLight; -- C27
{Phase=1} switchControl >> North.switchLight; -- C28
{Phase=3} switchControl >> West.switchLight; -- C29
West.switchLight >> East.switchLight; -— C30
North.switchLight >> South.switchLight; -— C31

3.5 Collaboration Diagrams

In principle, a collaboration diagram shows the same information as a sequence
diagram but it emphasizes the objects and their links not the behavior in time. Col-
laboration diagrams extend object diagrams. Recall object diagrams visualize class
instances (objects) and their concrete relationships (links). Interaction is displayed in
collaboration diagrams on the links by stating the event sent (the message sent). In
addition, arrows identify sender and receiver objects and a numbering system captures
the sequences the events take (the event sequences were captured by the lifelines in
sequence diagrams).

The collaboration diagram in Fig. 10 shows the same events as the sequence diagram

11

X

+ 1 : createControl
v 2 : createlLights

v 3 : switchControl
+ 4 : switchControl
+5 : switchControl
+ 6 : switchControl
v 7 : switchControl

:Control

v2a : createLight(3) |+2b : createLight(3) |+ 2c : createLight(1) |+2d : createLight(1)
+3a : switchLight |+3b : switchLight |+3c : switchLight |+3d : switchLight
v4a : switchLight |+4b : switchLight
+5a : switchLight |+5b : switchLight |¥5c : switchLight |+5d : switchLight
v6a : switchLight |+6b : switchLight
V7a: switchLight |[+7b : switchLight [¥+7c: switchLight |+7d : switchLight

East West North South

Figure 10: Collaboration Diagram

in Fig. 9. Thus the diagram deals with the same objects: the user object, the Control
object, and the four traffic lights. Sets of events belonging together are grouped
by the similar event numbers on the links. For example, the second from above
switchControl event in Fig. 9 together with the called events switchLight in North
and switchLight in South is represented in the collaboration diagram by (1) the
label 4 on the link between the user object and :Control object, (2) the label 4a on
the link between the :Control object and the North traffic light, and (3) the label
4b on the link between the :Control object and the South traffic light. The number
4 indicates that this is the forth event in the considered sequence, and 4a and 4b
indicate that these events are “children” of the 4 event, and the letters show that
they occur concurrently (in contrast to numerical labels which stand for sequential
occurrences).

3.6 Statechart Diagrams

A statechart diagram reflects the state sequences occurring in an object or in an
interaction during its life. State changes occur in response to received stimuli. The
state diagram can also show responses of the object.

Figure 11 directly shows the behavior patterns of the TROLL light specifications
represented as state machines. The allowed sequence of events for TrafficLight

12

TrafficLightBehavior

TrafficLight LightLife switchLight

createLight

ControlBehavior

CreatelLights - ControlLife switchControl
createControl createLights

Figure 11: Statechart diagram for BEHAVIOR sections

and Control are visualized. For example, in the template Control a life cycle starts
with one createControl event followed by one createLights event. Afterwards an
arbitrary number of switchControl events are allowed.

BEHAVIOR -- L18
PROCESS TrafficLight = (createlLight -> LightLife); -— L19
PROCESS LightLife = (switchLight -> LightLife); -- L20

BEHAVIOR -- €32
PROCESS Control = (createControl -> Createlights); -- €33
PROCESS CreateLights = (createlLights -> ControlLife); -- C34
PROCESS ControlLife = (switchControl -> ControlLife); -- C35

The statechart diagrams in Figs. 12, 13 and 14 also characterize allowed state se-
quences. However, they do not correspond directly to pieces of code as the state
machines in Fig. 11. Figures 12 and 13 can be considered as a refinement of state
LightLife of Fig. 11, and Fig. 14 makes state ControlLife of Fig. 11 more concrete.

The refinement of state LightLife given in Fig. 13 has states Red/Phase=1,
Green/Phase=2, and GreenYellow/Phase=3. The chosen state names reflect the
colors the traffic light shows and indicate the value of the attribute Phase. This
value is modified by the VALUATION axioms for the event switchLight in the TROLL
light specification. After entering the initial state denoted by the filled circle (in
UML terminology a pseudo-state), the next state is determined by the decision for
which object the state diagram is used for. For the North and South traffic lights
the “proper” initial state is Red/Phase=1, for the West and East traffic lights it is
GreenYellow/Phase=3. Figure 13 can be considered as an abstraction of the two
statechart in Fig. 12 where separate diagrams for the North and South traffic light

13

LightLifeNorthSouth

switchLight
Red Green GreenYellow
Phase=1 Phase=2 Phase=3
I switchLight switchLight
LightLifeWestEast
switchLight
Red Green GreenYellow
3 Phase=1 Phase=2 Phase=3
switchLight switchLight i

Figure 12: Statechart diagrams for LightLife

LightLife
switchLight
Red Green GreenYellow
3 Phase=1 Phase=2 Phase=3
switchLight switchLight

[initPhaseEqualTo(1)] i [initPhaseEqualTo(3)]

Figure 13: Alternative Statechart diagram for LightLife

14

ControlLife
switchContro
Phase=1 Phase=2 Phase=3 Phase=4
North.Phase=2 [G] North.Phase=3 [GY] North.Phase=1 [R] North.Phase=1 [R]
West.Phase=1 [R] West.Phase=1 [R] West.Phase=2 [G] VVestPhase 3[GY]
switchControl switchControl switchContro

Figure 14: Statechart diagram for ControlLife

and the West and East traffic lights are pictured. Analogously to the refinement of
state LightLife, the statechart diagram in Fig. 14 shows the internal structure of the
Control object in dependency from the switchControl event.

VALUATION -- L11
[createLight (initPhase)] Phase=initPhase; -- L12
[switchLight] Phase=(Phase MOD 3)+1; -- L13

VALUATION -- C12
[createControl] Phase=4; -- C13
[switchControl] Phase=(Phase MOD 4)+1; -- C14

The diagram in Fig. 15 repeats three statecharts shown before. Additionally how-
ever, messages sent from one object to another object are indicated by dashed ar-
rows. Thus, for example, the transition in ControlLife between states Phase=2 and
Phase=3 induces transitions (A) in LightLifeNorthSouth between states Phase=3
and Phase=1 and (B) in LightLifeWestEast between states Phase=1 and Phase=2.
The messages sent correspond to the INTERACTION patterns of the TROLL light spec-
ification.

INTERACTION -- C22
{Phase=4 OR Phase=2} switchControl >> -- C26
West.switchLight, North.switchLight; -- C27
{Phase=1} switchControl >> North.switchLight; -- C28
{Phase=3} switchControl >> West.switchLight; -- C29
West.switchLight >> East.switchLight; -— C30
North.switchLight >> South.switchLight; -— C31

15

LightLifeNorthSouth
switchLight
Green
N Phase=2
SW|tchL|ght
\ /// //
\\ /// ///
/\/\/ ///
7 \\ //
ControlLife 7 R 7
7 swﬂchControI 7
Phase=1 Phase 2 Phase 3 Phase=4
North.Phase=2 [G] orth Phase=3 [GY] Nortb Phase=1 [R] North.Phase=1 [R]
West.Phase=1 [R] West.Phase=1 [R] |/ | West. Phase 2[G]), |West. Phase 3 [GY]
switchControl swﬂ’chControI N sw;tchControI
/I \\ l
/’ \/’\
/ RN
/ / \
/ / \\
LightLifeWestEast / / \\\
/ switchLight /

switchLight switchLight

Figure 15: Statechart Diagrams with Messages Sent

3.7 Activity Diagrams

Typically, an activity diagram shows action states, i.e. states representing the
execution of an atomic action. Most of the transitions are triggered by completion
of actions in the source state. The purpose of this diagram form is to focus on flows
driven by internal processes. Activity diagrams have a strong relationship to classical
data flow diagrams.

Figure 16 shows an activity diagram for the first valuation axiom (L12) of
TrafficLight. The action states are pictured as rounded rectangles. The actions
taken represent activities needed for the evaluation of the axiom in order to modify
the attributes Phase. We have grouped the diagram into so-called “swimlanes” to em-
phasize the participating objects. Thus in addition to the traffic light and the control
object there is an object Temporary responsible for the evaluation of the expression
on the right hand side of the valuation axiom. The actions consume or read objects
along ingoing edges and produce or modify objects along outgoing edges.

Another part of TROLL light where activity diagrams can be used to represent

16

Control TrafficLight Temporary

<createLights }{createLig ht(c)>

initPhase

eval-expr

expr-value

PhaseWritten F ——{write-attribute)

Figure 16: Activity Diagram for Valuation and Triggering of Phase=initPhase

Phase

[eval[Phase=1] } { eval[Phase=3] } {eval[Phase:Z or Phase=3]}

Red Yellow Green

Figure 17: Activity Diagram for Derivation Rules

pieces of code are the DERIVATION axioms. In Fig. 17 we have pictured the respective
axioms of the TrafficLight template. Roughly speaking, we have shown an action
state for each derivation rule. The diagram captures the dependencies between the
rules and attributes in the evaluation process.

DERIVATION -- L14
Red = (Phase=1); -- L15
Yellow = (Phase=3); -- L16
Green = (Phase=2 OR Phase=3); -- L17

17

3.8 Component Diagrams

Bool

TrafficLight Control

Figure 18: Component Diagram for Traffic Light System

Implementation diagrams are designed to represent implementation aspects. They
are divided into component and deployment diagrams. Component diagrams point
out the structure of the code itself. Deployment diagrams visualize the structure of
the run-time system.

Figure 18 reflects the overall structure of the TROLL light specification. The dashed
arrows indicated dependencies as given for example in the TROLL light DATA TYPES
and TEMPLATES sections. Because we have a strict separation between data types
and templates in TROLL light, the data type layer is represented by one UML inter-
face (displayed by a small circle) called DataTypeInterface.

3.9 Deployment Diagrams

The second form of an implementation diagram is the deployment diagram. The
deployment diagram in Fig. 19 shows a possible structure for a running traffic light
control system. The contents of this diagram is not reflected by the TROLL light
specification at all, because the language is intended to be a specification and not
an implementation language. The diagram describes that the running system works
on three resources (machines) of different nature. The participating objects are dis-
tributed over these machines.

4 Summary and Conclusion

As a summary we want to show a diagram and a table concentrating on central aspects
of UML.

In Fig. 20 we have pictured the various relationships between UML diagram forms.
We have used the UML class diagram notation (with additional adornments or stereo-

18

WestNorth:PC

L’J

West:TrafficLight North:TrafficLight

EastSouth:PC
East:TrafficLight
1T South:TrafficLight
VT
DataTypeHandler Root:Control
MainServer:SUN

Figure 19: Deployment Diagram for Traffic Light System

types as they would be called in UML). We have mapped the diagram forms to dif-
ferent phases of a very simple, idealized software development process (at the bottom
of the diagram), emphasizing the main initial usage of the respective diagram but not
excluding use of the diagram in other steps of the process.

At the top of the generalization hierarchies, we identify UseCase, StaticStructure,
Behavioral, and Implementation diagrams. StaticStructure diagrams are special-
ized to Class and Object diagrams with a special association between them denoting
that Object diagrams represent instances for Class diagrams (as indicated by the
mirrored element sign). Behavioral diagrams specialize to Sequence, Interaction,
and Statechart diagrams where Statechart diagrams are further specialized to
Activity diagrams and the special association between Sequence and Interaction
diagrams denotes that both diagram forms are capable of expressing equivalent con-
tent. Last, Implementation diagrams are specialized to Component and Deployment
diagrams. The three classes which have their names shown in italics represent abstract

19

UseCase

o |5

Requirements

StaticStructure

4:

Implementation

4;
Behavioral | |
7 Component Deployment
\ \ \
Sequence Interaction Statechart
& f
Activity
------e-o----> Apalysis and Design ------c-cecsese-e---o-o> Implementation

Figure 20: Relationships between UML Diagram Forms

Cla Obj Use Seq Col Sta Act Com Dep
Instance + + + + + + + +
Generic + + o+ 4+ o+ o+ o+
Static + +
Behavioral + o+ 4+ o+ o+
Passive State + 4+ +
Active State + o+
Transition + 4+ o+ 4+
External +
Internal + + + + + + + +
Requirements +
Design + 4+ + + + 4+
Implementation + +
Time +
Space +
Compile + 4 + + + o+ o+
Run +

Figure 21: Relationship between Diagram Forms and Selected Criteria

20

classes which cannot be instanciated directly but only through one of their subclasses.

The matrix in Fig. 21 expresses whether a diagram applies to a fixed criterion (speak-
ing in UML terms, the matrix is an object diagram showing links for a class diagram
having two classes Criterion and DiagramForm and one association AppliesTo). The
plus + indicates that the diagram is capable of making a statement about the given
criterion. The criteria try to answer the following questions.

e Does the diagram describe things in instance form or generic form?

Does the diagram emphasize static or behavioral aspects?

Does the diagram apply to passive states, active states or transitions?

Does the diagram support an external or an internal view on the system?

In which development phase is the diagram mainly applied?

Does the diagram emphasize time (sequences) or space (links)?

Does the diagram apply to compile time or run time?

We have attempted to give introductory examples for and an overview on the various
UML diagram forms. Of course there is much more to the UML story than we have
shown. Probably, more questions about UML now arise than before. It remains to
refer again to the original UML definition [BJR97¢c, BJR97b, BJR97a].

Acknowledgment

Thanks to Mark Richters for commenting on a draft version of this paper.

References

[BBE*90] G. v. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-
Monval, and N. Williams. Mondel: An Object-Oriented Specification
Language. Publication 748, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, 1990.

[BJR97a] Grady Booch, Ivar Jacobson, and James Rumbaugh, editors. Object Con-
straint Language (Version 1.1). Rational Corporation, Santa Clara, 1997.
http://www.rational.com.

[BJRI7b] Grady Booch, Ivar Jacobson, and James Rumbaugh, editors. UML No-
tation Guide (Version 1.1). Rational Corporation, Santa Clara, 1997.
http://www.rational.com.

21

[BJRO7C]

[Boo91]
[CY90]

[DDP93]

[GCHY3]

[GHO5]

[HOG4]

[JCI092]

[JSHSO1]

[MO92]

[RBP*91]

[RGYT]

[SGW94]

Grady Booch, Ivar Jacobson, and James Rumbaugh, editors. UML
Semantics (Version 1.1). Rational Corporation, Santa Clara, 1997.
http://www.rational.com.

G. Booch. Object-Oriented Design with Application. Benjamin-Cummings,
1991.

P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press, Pren-
tice Hall, 1990.

E. Dubois, P. Du Bois, and M. Petit. O-O Requirements Analysis: an
Agent Perspective. In O.M. Nierstrasz, editor, ECOOP’93 — Object-
Oriented Programming, pages 458-481. Springer, Berlin, LNCS 707, 1993.

M. Gogolla, S. Conrad, and R. Herzig. Sketching Concepts and Compu-
tational Model of TROLL light. In A. Miola, editor, Proc. 3rd Int. Conf.
Design and Implementation of Symbolic Computation Systems (DISCO),
pages 17-32. Springer, Berlin, LNCS 722, 1993.

Martin Gogolla and Rudolf Herzig. An Algebraic Semantics for the Object
Specification Language TROLL light. In Egidio Astesiano, Gianna Reggio,
and Andrzej Tarlecki, editors, Proc. 10th Int. Workshop Abstract Data
Types (WADT’94), pages 288-304. Springer, Berlin, LNCS 906, 1995.

R. Herzig, S. Conrad, and M. Gogolla. Compositional Description of
Object Communities with TROLL light. In C. Chrisment, editor, Proc.
Basque Int. Workshop on Information Technology (BIWIT’94): Informa-
tion Systems Design and Hypermedia, pages 183-194. Cépadués—Editions,
Toulouse, 1994.

I. Jacobson, M. Christerson, P. Johnsson, and G. Overgaard. Object-
Oriented Software Engineering: A Use Case Driven Approach. Prentice-
Hall, 1992.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-Oriented
Specification of Information Systems: The TROLL Language. Informatik-
Bericht 91-04, TU Braunschweig, 1991.

J. Martin and J.J. Odell. Object-Oriented Analysis and Design. Prentice-
Hall, Englewood Cliffs (NJ), 1992.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs
(NJ), 1991.

Mark Richters and Martin Gogolla. A Web-based Animator for Val-
idating Object Specifications. In Bipin C. Desai and Barry Eagle-
stone, editors, Proc. Int. Database Engineering and Applications Sym-
posium (IDEAS’97), pages 211-219. IEEE, Los Alamitos, 1997.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-
Oriented Modeling. John Wiley Sons, 1994.

22

[SM92]

[SSES7]

[Wie91]

[WWW90]

S. Shlaer and S.J. Mellor. Object Life Cycles: Modeling the World in
States. Prentice-Hall, 1992.

A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-Oriented Specifica-
tion of Databases: An Algebraic Approach. In P.M. Stoecker and W. Kent,
editors, Proc. 13th Int. Conf. on Very Large Databases VLDB’87, pages
107-116. VLDB Endowment Press, Saratoga (CA), 1987.

R.J. Wieringa. A Conceptual Model Specification Language (CMSL, Ver-
sion 2). Technical Report IR-248, Faculty of Mathematics and Computer
Science, Vrije Universiteit Amsterdam, 1991.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice-Hall, 1990.

23

